Noether’s Theorem for Fractional Optimal Control Problems
نویسندگان
چکیده
We begin by reporting on some recent results of the authors (Frederico and Torres, 2006), concerning the use of the fractional Euler-Lagrange notion to prove a Noether-like theorem for the problems of the calculus of variations with fractional derivatives. We then obtain, following the Lagrange multiplier technique used in (Agrawal, 2004), a new version of Noether’s theorem to fractional optimal control systems.
منابع مشابه
Cape Verde Praia , Santiago , Cape Verde
We prove a Noether’s theorem for fractional variational problems with Riesz-Caputo derivatives. Both Lagrangian and Hamiltonian formulations are obtained. Illustrative examples in the fractional context of the calculus of variations and optimal control are given.
متن کاملFractional conservation laws in optimal control theory
Using the recent formulation of Noether’s theorem for the problems of the calculus of variations with fractional derivatives, the Lagrange multiplier technique, and the fractional Euler-Lagrange equations, we prove a Noetherlike theorem to the more general context of the fractional optimal control. As a corollary, it follows that in the fractional case the autonomous Hamiltonian does not define...
متن کاملNoether’s Symmetry Theorem for Variational and Optimal Control Problems with Time Delay
We extend the DuBois–Reymond necessary optimality condition and Noether’s symmetry theorem to the time delay variational setting. Both Lagrangian and Hamiltonian versions of Noether’s theorem are proved, covering problems of the calculus of variations and optimal control with delays.
متن کاملFractional Optimal Control in the Sense of Caputo and the Fractional Noether’s Theorem
The study of fractional variational problems with derivatives in the sense of Caputo is a recent subject, the main results being Agrawal’s necessary optimality conditions of Euler-Lagrange and respective transversality conditions. Using Agrawal’s Euler-Lagrange equation and the Lagrange multiplier technique, we obtain here a Noether-like theorem for fractional optimal control problems in the se...
متن کاملNonconservative Noether’s Theorem in Optimal Control
We extend Noether’s theorem to dynamical optimal control systems being under the action of nonconservative forces. A systematic way of calculating conservation laws for nonconservative optimal control problems is given. As a corollary, the conserved quantities previously obtained in the literature for nonconservative problems of mechanics and the calculus of variations are derived.
متن کامل